Frequently Asked Questions: Genome Browser Tracks
Topics
Return to FAQ Table of Contents
List of tracks available for a specific assembly
How can I find out which tracks have been released for the assembly in which I'm
interested?
The Release Log contains lists of the
published tracks and release dates for the current set of genome assemblies available on our site.
It also shows version information for the assemblies of other species used in comparative genomics
tracks.
Database/browser start coordinates differ by 1 base
I am confused about the start coordinates for items in the refGene table. It looks like you
need to add "1" to the starting point in order to get the same start coordinate as is
shown by the Genome Browser. Why is this the case?
Our internal database representations of coordinates always have a zero-based start and a one-based
end. We add 1 to the start before displaying coordinates in the Genome Browser. Therefore, they
appear as one-based start, one-based end in the graphical display. The refGene.txt file is a
database file, and consequently is based on the internal representation.
We use this particular internal representation because it simplifies coordinate arithmetic, i.e. it
eliminates the need to add or subtract 1 at every step. If you use a database dump file but would
prefer to see the one-based start coordinates, you will always need to add 1 to each start
coordinate.
If you submit data to the browser in position format (chr#:##-##), the browser assumes this
information is 1-based. If you submit data in any other format (BED (chr# ## ##) or otherwise), the
browser will assume it is 0-based. You can see this both in our liftOver utility and in our search
bar, by entering the same numbers in position or BED format and observing the results. Similarly,
any data returned by the browser in position format is 1-based, while data returned in BED format
is 0-based.
For a detailed explanation, please see our blog entry for the
UCSC Genome Browser coordinate counting systems.
mRNA associated results
Sometimes when I type in the name of a gene -- e.g. DAO (D aminoacid oxidase) -- the Genome
Browser returns a list that includes the gene entry on the assembly, but also contains links to
several other genes and aligned mRNAs. What is the relationship between my gene of interest and
these results?
The gene search results are obtained from scanning the RefSeq and Known Genes tracks, which are
typically based on non-redundant relatively high quality mRNAs. A small fraction of RefSeqs are
based on DNA level annotations. In most cases, there is a HUGO Gene Nomenclature Committee symbol or
other biological name associated with the gene. In the case of the RefSeq track, the association
between these names and the accession is maintained at NCBI and is also present in the refLink
table.
The mRNA search results are obtained by scanning data associated with the GenBank record for mRNAs.
These are often redundant, but occasionally contain something useful that has not yet made it into
RefSeq. The mRNA information is often useful because the people who deposited the mRNA into GenBank
are listed in the record. Frequently these same people have written interesting articles on the
gene or may serve as a source of information on the gene.
Correspondence of Genome Browser mRNA positions to those of OMIM genes
If I do a Genome Browser search for an mRNA sequence using its GenBank accession number,
will I always get the same cytogenetic location as that given by OMIM for the gene?
Not always. Sometimes the Genome Browser will return more than one location when there are recent
duplication or assembly problems in the human genome. In these cases, usually one of the locations
will agree with OMIM. In a few rare instances involving not-quite-so-recent duplications in the
genome, UCSC will attempt to assign it uniquely, but OMIM will think it belongs someplace just under
our threshold. A Blat search of the cDNA is very informative in these cases. In rare cases, UCSC
or NCBI may have made a data processing error. For the vast majority of cases, however, the two
sites do match.
Position changes of features
Yesterday I was looking at a contig in a specific location, and today the location has
changed. What happened?
Check that you are using the same assembly version that you were using yesterday. Features may
change positions within a genome between releases, particularly if they are located in an area of
the genome that is still in draft form. See Coordinate changes
between assemblies for more information.
Evaluating possible alternative splices
When you view results from the Genome Browser, how do you determine whether the alternative
splice is real or if it is a sequencing artifact?
It's a very good idea to click into the alignment and check that it looks clean at a detailed level
and that the splice sites are reasonable. If you have an alternate exon, it is also good to Blat
just that exon. Occasionally you may encounter a recent tandem duplication event that encompasses a
single exon, which can masquerade as alternative splicing on the graphical display. If it's an EST,
check to see if it is from a RAGE library. If so, alternative promoters are likely to be an artifact
of the RAGE process rather than biological. If the alternative splice still looks good after these
checks, the next step is to do some RT-PCR in the lab.
Matching exons and protein sequence
I am working with alternatively spliced forms of an enzyme. How can I use the database to
identify exons and exactly match them to protein databases (i.e. identify the exons based on a
protein sequence and vice versa)?
If you have a protein sequence, you can use Blat to align your
sequence to the desired genome. In the ACTIONS column on the Blat search results page, click the
details link to view details of exons blocks. Alternatively, click the browser link to display the
search results in the Genome Browser. Look for instances in which a gene from the Blat query track
aligns exactly or very similarly to an entry in the Known Genes track. Click on the entry to display
details about the gene. The SWISS-PROT link on the details page will lead you to more details about
this protein.
Follow a similar procedure with an mRNA sequence. If there is no corresponding entry in the Known
Genes or RefSeq track, then congratulations, you may have found an unreported new gene. You may want
to doublecheck the results using NCBI BLAST.
Cause of duplicated gene
I have found a gene that has two identical copies on different chromosomes within the
Genome Browser. Is this possible?
One of the copies may be an artifactual duplication resulting from unavoidable compromises in the
assembly process. However, there do exist very recent authentic duplication events. Frequently these
are pericentromeric or subtelomeric.
There are several checks you can make to determine whether you are viewing an actual duplication or
an assembly process artifact. Create a Blat track from the gene's mRNA and examine the details page
for a match that is too perfect. Then, open the Genome Browser with the duplication and gap tracks
set to dense mode. Look for problems in the flanking sequence in the duplication track. Also look
for suspicious placement of the gene, for example inside the intron of another gene. You may also
want to follow the OMIM link to look for hand-curated experimental literature summaries. BLASTing
the mRNA against a more recent assembly may provide another line of evidence.
Protein doesn't begin with methionine
I am looking at a human protein that the Genome Browser associates with a particular gene.
According to the Genome Browser, its amino acid sequence doesn't start with M (methionine). I
thought nuclear-encoded human proteins always began with methionine?
The UCSC genome browser uses translated mRNA data exactly as supplied to GenBank by the original
sequencing authors. Any errors at GenBank propagate through many other databases and tools. To work
effectively in a bioinformatic area subject to errors, it is a good idea to seek supporting data for
any unusual finding.
To further investigate this example, you may want to use Blat or BLAST to recover other close
members of this gene family. By using comparative alignment, you may discover that the 5' UTR in the
mRNA for this protein was likely misinterpreted as coding sequence and that the protein begins with
methionine as expected. The error may also be caused by an underlying mRNA in GenBank that stops
short of the initiator methionine. In this case, you could use ESTs, other mRNAs, and Blat or BLAST
of paralogs against unfinished genome sequence to extend the mRNA to a more plausible full-length
sequence.
Doing an orthology track analysis of a protein
I am working on a lipase called hormone-sensitive lipase (HSL) gene ID NM_010719. I am trying
to see if there is any protein that has the same domain organization as HSL. Will doing an orthology
track of the protein help me to get an answer? How do I do the orthology track
analysis?
You can accomplish this by using Blat and the Genome Browser Superfamily track. Blat the protein
sequence from the NCBI RefSeq record, then choose the choose the Browser display option to view your
search results in the Genome Browser window. Set the RefSeq and Superfamily tracks to full display
mode. The RefSeq track will contain the entry LIPE, and you will find the corresponding entry
ENSP00000244289 in the Superfamily track. Click the Superfamily entry, and then click the
Superfamily link on the details page that displays. This will open a browser for the Superfamily
site. Click "alpha/beta-Hydrolases" to open the Structural Classification of Proteins
(SCOP) page. There you will find multiple families listed under this Superfamily, including the
lipase in which you're interested.
Quality benchmarks for predicted genes
Do you offer any benchmarks of quality and quantity of known and predicted genes shown in
the Acembly, Ensembl, Genscan, Fgenesh++, Twinscan, and TIGR Gene Index gene prediction
tracks?
These tracks are contributed by institutional programs outside of UCSC. You can access links to
their home pages and relevant publications from the description pages associated with the tracks
(which can be viewed by clicking on the grey mini-button to the left of the track). You may also
obtain supplemental information from the Users
Guide and the Credits page. Methods and
quality checks are often described in greater detail there. No uniform benchmarking system exists.
Finished chromosomes are commonly used, but even here the experimental work continues today on
delineating genes.
UCSC does not provide summary statistics for these tracks. However, these may be easily compiled
from the appropriate tables in the Table Browser. The number of
predicted genes and exons are easily compared. Some quality checks can also easily be run, such as
how many of the predicted gene models are incomplete (e.g. the transcription start coordinate is the
same as the CDS start).
Looking at almost any coordinate position within the Genome Browser, you can see that there are
discrepancies between the predicted gene tracks, as well as further inconsistencies with respect to
experimental data tracks such as spliced ESTs. The RefSeq track also contains genes of uncertain
status, e.g. lack of initiator methionine. Thus, it is not clear where one can obtain a gold
standard for measuring gene prediction quality. A reference set might be hand-curated out of recent
journal articles of exceptional thoroughness. UCSC does not currently maintain such a resource.
Display conventions for gene prediction tracks
What is the significance of the thinner blocks displayed at the beginning and end of a gene
in the browser?
The varying thickness of features in the Genome Browser gene tracks denotes the various structural
features of a gene, such as exons, introns, and untranslated regions (UTRs). The thickest parts of
the track indicate the coding exon regions within the gene. The slightly thinner portions at the
leading and trailing ends of the gene track show the 5' and 3' UTRs. Introns are depicted as lines
with arrows indicating the direction of transcription.
Some aspects of the graphical representation are inevitably lost upon rescaling. For example,
coding exons are given preference at coarse scales. For single exon genes, there is no place to put
the strand orientation wedges, and therefore the feature's detail page must be consulted.
For more information about annotation track display conventions within the Genome Browser, consult
the User's Guide.
Viewing detailed displays in conservation tracks
When I click on a region in the Human/Mouse Evolutionary Conservation Score track, it
doesn't give me detailed information.
The track is defaulting to dense display mode because the size of the track's displayed region is
too large. Unfortunately, this particular track doesn't have good visual cues to show you when
it's defaulting to dense mode. If you zoom in on the region in which you're having the problem, you
should be able to display the details page.
Negative strand coordinates in PSL files
I've noticed that the blatFugu table has two characters representing the strand. Also, I've
noticed that the starting/ending positions of the blocks don't fall within the start/end positions
of the chromosome target.
When the second character in the strand is "-", the coordinates of the comma-separated
list of tStarts are reverse-complemented relative to tStart, much as qStarts behave when the first
letter in the strand is "-".
Inconsistency in stop codon treatment in GTF tracks
I've been doing some comparative gene set analysis using the gene annotation tracks and I
believe I have run into an inconsistency in the way that stop codons are treated in the annotations.
Looking at the Human June 2002 assembly, the annotations for Ensembl, Twinscan, SGP, and Geneid
appear to exclude the stop codon in the coding region coordinates. All of the other gene annotation
sets include the stop codon as part of the coding region. My guess is that this inconsistency is the
result of the gene sets being imported from different file formats. The
GTF2 format does not include the stop
codon in the terminal exon, while the GenBank format does, and the GFF format does not specify what
to do.
Your guess is correct. We haven't gotten around to fixing this situation. A while ago, the
Twinscan group made a GTF validator. It interpreted the stop codon as not part of the
coding region. Prior to that, all GFF and GTF annotations that we received did include the stop
codon as part of the coding region; therefore, we didn't have special code in our database to
enforce it. In response to the validator, Ensembl, SGP and Geneid switched their handling of stop
codons to the way that Twinscan does it, hence the discrepancy.
Obtaining clones referenced in Genome Browser
Is it possible to purchase the chromosome clones referenced in the Genome
Browser?
You can find further information about a specific clone by clicking on the clone name link on the
details page for the item. This links to the NCBI Clone Registry website, which lists extensive
details about the clone, including distributor information.
Locating centromeres and telomeres
How do I find the positions of the centromeres and telomeres in a particular
assembly?
This information can be found in the "gap" database table. Use the Table Browser to
extract it. To do this, select your assembly and the gap table, then click the "
filter Create" button. Set the "type" field to centromere telomere
(separated by a space). For help using the Table Browser, visit the
User's Guide.
Determining the table name for an annotation track
How do I find the name of the database table that contains the data for a particular
annotation track?
Each annotation track in the Genome Browser has one or more database tables associated with it. To
find the name of the primary table, navigate to the schema page. You will find the schema page by
pressing the "mini-button" to the left of the annotation track display, or clicking the
hyper-linked track name in the track controls (below the display). From the resulting description
page, follow the "View table schema" link. Finally, on the schema page, you will find the
name of the database table near the top of the page listed after the "Primary Table"
label.
Unexpected results in UCSC RefSeq track
Why do some annotations differ in the UCSC RefSeq track compared to NCBI's Reference Sequence
Database?
Historically, NCBI RefSeq coordinates were not directly available for building tracks in the UCSC
Genome Brower. Instead of using coordinates to map annotations, mappings to the reference assembly
were conducted using BLAT
(BLAST-like alignment tool) alignment methods. This BLAT alignment method has caused some
discrepancies from the NCBI RefSeq database. Most discrepancies arise when the BLAT-generated
annotations align to multiple regions where the sequence in the assembly is either identical or
nearly identical. In essence, by using BLAT to align the sequence, a single transcript could
result in matching to multiple novel places across the genome, or alignments of small exons could
differ slightly in final coordinates within the region of a gene rich with repeats.
BLAT-generated RefSeq track methods are described in
corresponding track description pages (e.g., RefSeq track description for hg19).
In 2017, NCBI RefSeq coordinates for hg38 were used for generating non-discrepant RefSeq tracks
in the UCSC Genome Browser. This new
NCBI RefSeq track in the UCSC Genome Browser displays identical RNA
coordinates to annotations in the NCBI Reference Sequence Database. Please note that when annotations do map
to multiple loci, the NCBI RefSeq track displays unique identifiers for each locus, while the
UCSC RefSeq track retains the same identifier.
For more information and future plans to integrate coordinate-generated NCBI RefSeq tracks for
other assemblies, please see the
NCBI RefSeq track blog post.